Evaluation of a metal artifact reduction algorithm in CT studies used for proton radiotherapy treatment planning

نویسندگان

  • Karin M. Andersson
  • Anders Ahnesjö
  • Christina Vallhagen Dahlgren
چکیده

Metal objects in the body such as hip prostheses cause artifacts in CT images. When CT images degraded by artifacts are used for treatment planning of radiotherapy, the artifacts can yield inaccurate dose calculations and, for particle beams, erroneous penetration depths. A metal artifact reduction software (O-MAR) installed on a Philips Brilliance Big Bore CT has been tested for applications in treatment planning of proton radiotherapy. Hip prostheses mounted in a water phantom were used as test objects. Images without metal objects were acquired and used as reference data for the analysis of artifact-affected regions outside of the metal objects in both the O-MAR corrected and the uncorrected images. Water equivalent thicknesses (WET) based on proton stopping power data were calculated to quantify differences in the calculated proton beam penetration for the different image sets. The WET to a selected point of interest between the hip prostheses was calculated for several beam directions of clinical relevance. The results show that the calculated differences in WET relative to the reference case were decreased when the O-MAR algorithm was applied. WET differences up to 2.0 cm were seen in the uncorrected case while, for the O-MAR corrected case, the maximum difference was decreased to 0.4 cm. The O-MAR algorithm can significantly improve the accuracy in proton range calculations. However, there are some residual effects, and the use of proton beam directions along artifact streaks should only be used with caution and appropriate margins.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Metal Artifact Reduction of Dental Fillings in Head and Neck CT Images

Introduction: The issue of metal artifact and its reduction is as old as the clinical use of computed tomography itself. When metal objects such as dental fillings, hip prostheses or surgical clips are present in the computed tomography (CT) field of view (FOV), make severe artifacts that reduce the image quality and accuracy of CT numbers. They can lead to unreliable ...

متن کامل

Metal Artifacts in Computed Tomography

Karin Andersson (2018): Metal Artifacts in Computed Tomography – impact of reduction methods on image quality and radiotherapy treatment planning. Örebro Studies in Medicine 172. Degradation of image quality by metal artifacts is a common problem in computed tomography (CT) imaging, which can limit the diagnostic value of a CT examination and also introduce inaccuracies in radiotherapy (RT) tre...

متن کامل

Evaluation of Metal Artifact Reduction software in Computed Tomography

Introduction: The image quality of computed tomography (CT) can be seriously lowered by metal implants of patients. These implants are known to exert a significant impact on diagnostic accuracy due to artifacts. The current study aimed to assess the usefulness of Metal Artifact Reduction (MAR) software in the reduction of metal artifacts, in comparison to iterative rec...

متن کامل

A New Method for Metal Artifact Reduction in CT Scan Images

Introduction In CT imaging, metallic implants inside the tissues cause metal artifact that reduce the quality of image for diagnosis. In order to reduce the effect of this artifact, a new method with more appropriate results has been presented in this research work. Materials and Methods The presented method comprised of following steps: a) image enhancement and metal areas extraction, b) sinog...

متن کامل

Artifact reduction techniques in Cone Beam Computed Tomography (CBCT) imaging modality

Introduction: Cone beam computed tomography (CBCT) was introduced and became more common based on its low cost, fast image procedure rate and low radiation dose compared to CT. This imaging modality improved diagnostic and treatment-planning procedures by providing three-dimensional information with greatly reduced level of radiation dose compared to 2D dental imaging modalitie...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 15  شماره 

صفحات  -

تاریخ انتشار 2014